
Complex Analysis: Resit Exam

Aletta Jacobshal 03, Friday 8 April 2016, 14:00 – 17:00
Exam duration: 3 hours

Instructions — read carefully before starting
- Do not forget to very clearly write your full name and student number on each answer sheet and on
the envelope. Do not seal the ennvelope.

- The exam consists of 6 questions; answer all of them.
- The total number of points is 100 and 10 points are “free”. The exam grade is the total number of points
divided by 10.

- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas,
theorems, formulas, etc.) you must explain why the conditions for using such results are satisfied.

- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (12 points)

(a) (6 points) Verify that the function f(z) = (z+i)2 satisfies the Cauchy-Riemann equations.
Solution
Write

f(z) = (z + i)2 = (x+ i(y + 1))2 = x2 − (y + 1)2 + 2ix(y + 1),

and identify

u = x2 − (y + 1)2, v = 2x(y + 1).

Then we have that

∂u

∂x
= 2x = ∂v

∂y
,

and

∂u

∂y
= −2(y + 1) = −∂v

∂x
.

Therefore the Cauchy-Riemann equations are satisfied.

(b) (6 points) Compute the Taylor series of the function f(z) = (z + i)2 around z0 = 1 ∈ C.
What is the domain where this Taylor series converges?
Solution
Write w = z − 1. Then

f(z) = (z + i)2 = (w + 1 + i)2 = w2 + 2(1 + i)w + (1 + i)2 = w2 + (2 + 2i)w + 2i
= 2i+ (2 + 2i)(z − 1) + (z − 1)2.

The domain of convergence is obviously C (since the series is here a finite sum).



Question 2 (18 points)

Consider the function

f(z) = e−iz

z2 + 4 .

(a) (6 points) Compute the residue of f(z) at each one of the singularities of f(z).
Solution
The singularities of f(z) are z = 2i and z = −2i, obtained as solutions of z2 + 4 = 0.
Each of the singularities is a pole of order 1. Therefore,

Res(f ; 2i) = lim
z→2i

(z − 2i) e−iz

z2 + 4 = lim
z→2i

e−iz

z + 2i = e2

4i = −e
2

4 i,

and

Res(f ;−2i) = lim
z→−2i

(z + 2i) e−iz

z2 + 4 = lim
z→−2i

e−iz

z − 2i = −e
−2

4i = 1
4e2 i.

(b) (12 points) Compute the principal value

pv
∫ ∞
−∞

e−ix

x2 + 4 dx.

Solution
We have

I = pv
∫ ∞
−∞

e−ix

x2 + 4 dx = lim
R→∞

∫ R

−R

e−ix

x2 + 4 dx.

Defining the contour γ as the straight line along the real axis from −R to R, we can write

I = lim
R→∞

∫
γ

e−iz

z2 + 4 dz.

We define a closed negatively oriented contour Γ as

Γ = γ + C−R ,

where C−R is the half-circle of radius R and center 0 in the lower half-plane joining R to
−R.
Then ∫

Γ

e−iz

z2 + 4 dz = −2πiRes(f ;−2i) = π

2e2

for large enough values of R since Γ encloses only the singularity −2i of the integrand and
it is negatively oriented.
For the integral over C−R we have that the coefficient of iz in e−iz is negative, and the
degree of the denominator in 1/(z2 + 4) is 2 while the degree of the numerator is 0, and
we can apply Jordan’s lemma to get

lim
R→∞

∫
C−

R

e−iz

z2 + 4 dz = 0.
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Therefore

lim
R→∞

(∫
γ

+
∫
C−

R

)
e−iz

z2 + 4 dz = lim
R→∞

∫
Γ

e−iz

z2 + 4 dz = π

2e2 ,

and the left-hand side gives

I + 0 = π

2e2 .

From here

I = π

2e2 .

Question 3 (14 points)

Consider the branch f(z) = L2π(z) of the logarithm.
(a) (6 points) Compute f(−e) and f ′(−e). Write the results in Cartesian form.

Solution
We have

f(−e) = L2π(−e) = Log | − e|+ i arg2π(−e) = 1 + 3πi.

Moreover,

f ′(z) = 1
z
,

so

f ′(−e) = −1
e
.

(b) (8 points) Evaluate the limits limε→0+ f(x+ iε) and limε→0+ f(x− iε) for x > 0.
Solution
We have

lim
ε→0+

f(x+ iε) = lim
ε→0+

L2π(x+ iε)

= lim
ε→0+

Log |x+ iε|+ i lim
ε→0+

arg2π(x+ iε)

= Log |x|+ 2πi = Log x+ 2πi.

We used here that the function Log |z| is continuous so the first limit is Log |x| while for
x > 0 and ε > 0 the second limit is 2π. Then we have

lim
ε→0+

f(x− iε) = lim
ε→0+

L2π(x− iε)

= lim
ε→0+

Log |x− iε|+ i lim
ε→0+

arg2π(x− iε)

= Log |x|+ 4πi = Log x+ 4πi.

We used here again that the function Log |z| is continuous so the first limit is Log |x| while
for x > 0 and ε > 0 the second limit is 4π.
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Question 4 (14 points)

Consider the function

f(z) = z2

z − 2 .

(a) (4 points) Determine the singularities of f(z) and their type.
Solution
The function has only one singularity at z = 2 and it is a simple pole (pole of order 1).

(b) (10 points) Compute the Laurent series
∑∞
j=−∞ ajz

j of the function f(z) in the domain
|z| > 2. What is the value of a−1?
Solution
We have

z2

z − 2 = z

1− 2
z

= z
∞∑
j=0

2j

zj
=
∞∑
j=0

2j

zj−1 =
∞∑

j=−1

2j+1

zj
,

where we used the geometric series since |2/z| < 1. To write the last expression in the
standard form we let j → −j and we find

z2

z − 2 =
1∑

j=−∞
21−jzj .

Then a−1 = 21−(−1) = 4.

Question 5 (16 points)

(a) (6 points) Given the function

f(z) = z3 (z − 3i) (z + 1)2

z2 + 2i ,

evaluate the integral ∫
C

f ′(z)
f(z) dz,

where C is the positively oriented circular contour with |z| = 2.
Solution
The Argument Principle gives that under the assumptions in this question we have∫

C

f ′(z)
f(z) dz = 2πi[N0(f)−Np(f)],

where N0(f) is the number of zeros of f(z) inside C, counting multiplicities, and Np(f) is
the number of poles of f(z) inside C, counting orders.
The function f(z) has zeros at 0 (triple zero), −1 (double zero), and 3i. The only zeros
inside C are −1 (double) and 0 (triple). Therefore, N0(f) = 5. The poles are solutions of
z2 + 2i, so there are two poles and they both lie on the circle |z| =

√
2, that is, inside C.

Therefore, ∫
C

f ′(z)
f(z) dz = 2πi[5− 2] = 6πi.
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(b) (10 points) Use Rouché’s theorem to show that the polynomial P (z) = z3 + ε(z2 + 1),
where 0 < ε < 8/5, has exactly 3 roots in the disk |z| < 2.
Solution
We apply Rouché’s theorem with f(z) = z3 and h(z) = ε(z2 + 1). The function f(z) has
exactly 3 zeros (counting multiplicity) and they lie in the disk |z| < 2. To conclude that
P (z) also has exactly two zeros inside the same disk we must check that |h(z)| < |f(z)| on
the circle |z| = 2.
For |z| = 2 and ε > 0 we have

|f(z)| = |z3| = |z|3 = 8,

and

|h(z)| = |ε||z2 + 1| ≤ |ε|(|z2|+ 1) = 5ε.

Therefore, for 0 < ε < 8/5 and for |z| = 2 we have |h(z)| = 5ε < 8 = |f(z)|. Applying
Rouché’s theorem gives the required result.

Question 6 (16 points)

(a) (8 points) Show that ∣∣∣∣∫
C

ez

z̄ + 2 dz
∣∣∣∣ ≤ πe2,

where C is the positively oriented circle |z − 1| = 1.
Solution
On C we have that 0 ≤ x ≤ 2 where x = Re z. It is possible to see this by drawing C
or by noticing that x − 1 = Re(z) − 1 = Re(z − 1) and we always have |Rew| ≤ |w|, so
|x− 1| ≤ 1. Therefore,

|ez| = |exeiy| = ex ≤ e2.

Moreover,

|z̄ + 2| = |(z̄ − 1) + 3| ≥ ||z̄ − 1| − 3| = |1− 3| = 2.

Therefore, ∣∣∣∣ ez

z̄ + 2

∣∣∣∣ ≤ e2

2 .

This means ∣∣∣∣∫
C

ez

z̄ + 2 dz
∣∣∣∣ ≤ e2

2 `(C) = πe2,

where, in the last step, we used that the length of the circle C of radius 1 is 2π.

(b) (8 points) Suppose that f(z) is an entire function such that f(z)/z2 is bounded for |z| ≥ R,
where R > 0. Show that f(z) is a polynomial of degree at most 2.
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Solution
Since f(z) is entire its Laurent series around any z0 ∈ C coincides with its Taylor series
and converges everywhere. In particular, the Laurent series for |z| ≥ R is the Taylor series
at 0 and it is given by

f(z) =
∞∑
j=0

ajz
j .

The function f(z)/z2 is only singular at z = 0, therefore its Laurent series is given for
|z| ≥ R by

f(z)
z2 = a0

z2 + a1
z

+
∞∑
j=0

aj+2z
j .

The last series defines an entire function and it is bounded since for |z| ≥ R we have∣∣∣∣f(z)
z2 −

a0
z2 −

a1
z

∣∣∣∣ ≤ ∣∣∣∣f(z)
z2

∣∣∣∣+ ∣∣∣∣a0
z2

∣∣∣∣+ ∣∣∣∣a1
z

∣∣∣∣ ≤M + |a0|R−2 + |a1|R−1 = M ′.

Therefore
∑∞
j=0 aj+2z

j is constant and taking z = 0 we find that it is equal to a2. This
means

f(z)
z2 = a0

z2 + a1
z

+ a2,

and then

f(z) = a0 + a1z + a2z
2.

End of the exam (Total: 90 points)
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